Prevalence, Indications and Complications for Cesarean Sections at District Hospital of Eastern Nepal

Prabhu Sah Department of Gynecology and Obstetrics

Ilam District Hospital

Nepal

Sangeeta Mishra Department of Gynecology and Obstetrics

Koshi Zonal Hospital

Biratnagar Nepal

Introduction: Cesarean Section (CS) is one of the most common obstetric operative procedures. The procedure of cesarean section is still challenging in hospitals, from rural areas of low-income countries like Nepal, where health resources remain scarce and limited. The aim of this study is to understand the prevalence of cesarean section, clinical indications that prompts CS and maternal complications following CS. Methods: In this descriptive crosssectional study, all cases of delivery at Ilam District Hospital from Jul 16, 2017 to Jul 15, 2018 were included. Ethical approval was obtained from the institution. Patients attending the hospital were from hilly and remote areas of Ilam, Pachthar and Taplejung districts. The prevalence, clinical indications and outcomes of CS were recorded. Data analysis were conducted using Microsoft Excel. Results: The prevalence of cesarean section was 162(14.70%). The mean maternal age was 24.59 (range 17-39) years. Fetal distress was the leading indication and accounted for 57(35.18%) cases for CS, followed by non-progress of labour 40(24.69%), failed induction 23(14.19%), Cephalopelvic disproportion 17(10.49%) and Breech or malpresentation 11(6.79%). Most of the patients were primigravida 115(70.98%) and mean gestational weeks was 40.21(range 36-44). No major maternal complications were noted. Neonatal mean weight was 3.52(2-5.5) kg and APGAR score of more than 6 at 5th minute were recorded in 158 (97.53%) of newborns. Conclusion: The CS prevalence in our study was within the WHO recommendations of 10-15%. The leading indications for CS were fetal distress and no major complications were seen in mothers or newborns following CS.

Keywords: cesarean section (CS); indication; complications; fetal and maternal outcome.

INTRODUCTION

The Cesarean Section (CS) is one of the most common operative procedures in obstetric practice for reduction of maternal and fetal morbidities and mortalities [1]. The initial purpose of cesarean section was to retrieve the infant from a dead or dying mother to save the baby's life. The indications for caesarean section have changed dramatically from ancient to modern times and as caesarean section has become comparatively became safer, obstetrician debate against delaying surgery to reduce maternal and perinatal infant mortality rates [2].

In rural areas of developing country, lack of trained healthcare providers, transportation system and proper equipment's are challenges for neonatal, infant and maternal mortality. The developing countries lack resources which makes the caesarean section procedure more complex and complicated [3]. The limited number of health facilities and skilled care providers, inappropriate

1/6

equipment, untrained staff, sociocultural and economic barriers and inadequate transportation system in the low-income countries like Nepal is presenting complex situation and facing challenges to improve cesarean delivery [4,5]. Scientific progress, social, cultural and legal issues have led to change in attitudes towards CS among patients and doctors. There is a need of strict implementations of the global indications and guidelines for CS, which will help to control unwanted and unnecessary surgical procedure of caesarean section [6].

Unnecessary obstetric intervention could be hazardous for maternal and neonatal health. Cesarean section operation evolved to save maternal life during difficult childbirth but now increasing choice to prevent perinatal morbidity and mortality. WHO recommends the cesarean section level of 15% but the rising trends of CS has presented major concerns within the health care system of all countries [7]. The proportion of births delivered by caesarean section in Nepal has increased from 5% in 2011 to 9% in 2016, with huge difference between urban (12%) and rural (6%) areas [8]. The aim of this study is to understand the prevalence of cesarean section, clinical indications that prompts caesarean section and its outcome at Ilam district hospital, which covers the three rural hilly districts i.e. Ilam, Panchthar and Taplejung districts of Eastern Nepal.

METHODS

This is an observational descriptive cross-sectional study, which includes all cases of delivery at Ilam District Hospital from Jul 16, 2017 to Jul 15, 2018. Most patients in this hospital come from rural areas of Ilam, Panchthar and Taplejung districts. The Department of **G**ynecology and **O** bstetrics at the hospital is managed by only one surgeon, who is responsible for doing self-ultrasound scanning along with pre and post-operative management for both mother and baby with the help of well-trained nurses and paramedics, but without other specialist doctors. Although the resources are scarce and limited, our team and hospital manage the patients at the best of their potential. All patients sign an informed consent for surgical procedure. The data was collected after the ethical clearance was received from the institution. In this study, all deliveries during study period were included to find out the modes and types of delivery, demographic profile of the patients, indications of CS, complications of CS, weight of infant, APGAR score at 5th minute. Antepartum, intrapartum and postpartum complications and management were also noted in all delivering (vaginal or CS) patients. Data were analysed using Microsoft Excel Program.

RESULTS

During the one-year period of Jul 16, 2017 and Jul 15, 2018, a total of 1102 deliveries were recorded. Among these deliveries, the common mode of deliveries was vaginal delivery followed by Lower (uterine) Segment Caesarean Section (LSCS) or Caesarean Section (CS). CS was performed 0n 162(14.70%) patients.

Mode of delivery	Frequency (n = 1102)	Percentage
Vaginal delivery	925	83.93
Instrumental delivery (vacuum)	15	1.36
Lower (uterine) Segment Caesarean Section (LSCS)	162	14.70

Table 1. Incidence of delivery

Mean age of the patients undergoing CS were 24.59 (17-39) years. Most of these CS were performed on women who were pregnant for the first time (primigravida - 70.98%). Majority of these CS were performed during the gestational week of 37-42 (90.74%).

Characteristics	Frequency (n=162)	P er centage
	Age (mean-24.59 years)	

≤19 years	22	13.58
20-24 years	71	43.82
25-29 years	40	24.69
30-34 years	20	12.34
≥35 years	9	5.55
	Gravi	da
Primigravida	115	70.98
Multipara	43	26.54
Grand-multipara	4	2.46
	Gestational ago	e(mean 40.)
⁵ 37 weeks	4	2.46
37-42 week	147	90.74
³ 42 weeks	11	6.79

Table 2. Distribution of CS cases by Age, Gravida and Gestational week

The most common indication of CS was fetal distress (35.18%), followed by non-progress of labour (24.69%), failed induction (14.19%), Cephalopelvic disproportion (10.49%) and Breech or malpresentation (6.79%).

Indications	Frequency (n=162)	Percent age
Fetal distress /meconium stained liquor (MSL)	57	35.18
Non-progress of labour (NPOL)	40	24.69
Failed induction	23	14.19
Cephalopelvic disproportion (CPD)	17	10.49
Breech or malpresentation	11	6.79
Oligohydramnios	5	3.08
Previous CS	3	1.85
Preeclampsia or eclampsia	3	1.85
multiple pregnancy	1	0.61
Cord prolapse	1	0.61
Others and unknown (BOH)	1	0.61

 $\textbf{Table 3.} \ \ \textit{Indication s for Cesarean Section}$

The complications following CS were minimal and minor. No major complication was seen in maternal and fetal health after the CS.

Characteristics	Frequency (n=162)	Percent age
No Complications	156	96.29
Urinary Tract infections (UTIs)	2	1.23
wound infection	1	0.61
Postpartum Hemorrhage PPH	3	1.85

 $\textbf{Table 4.} \ \ \textit{Complications in mother after CS}$

Mean weight of infant born after CS was 3.52 kg, with majority of them in the range of 2.5 to 3.9kg (80.24%). The mean APGAR score at 5^{th} minute for the newborn after CS was 7.91, with most of them having good score of over 6.

Characteristics	Frequency (n=162)	Percent age
	Neonatal weight (mean - 3.52kg)	

Less than 1.5 kg	0	0
1.5-2.4 kg	2	1.23
2.5-3.9 kg	130	80.24
More than 4kg	30	18.51
APGAR score at 5th minute (mean - 7.91)		
less than 4	1	0.61
less than 4 4-6	1 3	0.61 1.85

Table 5. Distribution of neonatal weigh t at birth and APGAR score at 5minute.

DISCUSSION

In this study done at Ilam District hospital, the Caesarean section rate was 14.70%. This is lower than the previous study done by Subedi in Eastern Nepal [7]. This may be because most of the patients were given short trail for vaginal delivery and no CS was conducted on maternal request. The CS rate in current study is also lower than the previous studies done by Gurung and colleagues at Gandaki Medical College teaching Hospital in Pokhara at 41.26%, Rajbhandary and Shrivastava at Nepal Medical College and Teaching Hospital in Kathmandu at 21.40 % and Dhakal and colleagues at Mid-Western Regional Hospital in Surkhet at 18.8% [9,10,11]. The rate of CS in Nepal varies with urban areas having twice as many CS as the rural areas [8]. This is reflected in the studies by Gurung et al. and Rajbhandary and Shrivastava, as their study was conducted in Pokhara and Kathmandu, two most urban areas of Nepal [9,10]. The CS rate of this study is in line with that of the study by Dhakal et al. possibly because of the similarities in the nature of patients attending from rural areas and the hospital setting being similar, though one is in Eastern part of Nepal and other in the Mid-Western part of Nepal [11].

Most of the patients in this study undergoing CS were in the age group of 20-24 years (43.82%) and more than two thirds of the patients were primigravida (70.98%). In contrast, the study done by Prasad et al. showed their patient age group were 25-29 years (42.8%) and only 51% of the patients undergoing CS were primigravida [12]. Similarly, the study done by Gurung et al. noticed only 52% cases of primigravida [9]. The higher rate of CS in lower age group patients in this study may be due to early marriage in the rural areas of hilly region and also because of the anxiety and fear associated with primigravida. Dhakal and colleagues also showed that the most common age group undergoing CS in their study were 20-24 (42.9%) years with the majority of CS performed during 37-42 weeks gestational age (88.5%), which is almost similar to our study at 90.74% [11]. Same finding may be due to same geographical area (Surkhet)in western part of Nepal. Again, the similarities in these findings may be associated with the nature of patients attending from rural areas and the hospital setting being similar.

We found that the most common indications of CS in this study were fetal distress/MSL (35.18%), followed by NPOL (24.69%), failed induction (14.19%), CPD (10.49%) and Breech or malpresentation (6.79%). Most of these indications have featured as the main indications for CS in many of the previous studies; such as Rajbhandary and Shrivastava showed fetal distress (40.4%), CPD (14.8%), Breech (10.4%); Dhakal et al. showed fetal distress/MSL (37.8%), NPOL (17.1%), Breech (15.8%); Prasad et al. (2017) showed fetal distress/MSL (29.15%), failed induction (19.73%), CPD (10.8%), Breech (8.5%) [10,11,12]. This demonstrates that regardless of the regional variations or rural and urban divide, the indications of CS remain the same and fetal distress/MSL, NPOL, failed induction, CPD and breech presentations are some of the main indications for caesarean sections.

In this study, the complications following CS were minimal and minor. No major complication was seen in maternal or fetal health after the CS. We found only 3.7% of patients showing complications in the form of UTI (1.23%), PPH (1.85%) and wound infection (0.61%), which were managed

4/6

conservatively. This was in contrast with many of the previous studies. Rajbhandary and Shrivastava found complications among 27.32% of their patients [10]. The complications included UTI (18.6%), wound infection (6.6%) and PPH(1.6%). Similarly, Sharma et al. found high rate of complications at 42.7% among their patients, with the predominance of PPH (21.1%), wound infection (7.6%) [13]. Another study, Dhakal et al. noticed very low complications of 3.7% in their study, with majority of these patients showing PPH and wound infection [11]. The similarity in low complications rate in this study and Dhakal et al may be because of the lower age of the majority of patients in both these studies [11]. In our study, low rate of maternal complication may be due to short duration of catheterization (removed within 24 hour of surgery), proper use of uterotonics and use of antibiotics for 5-7 days after CS.

Our study showed the APGAR score of more than six in 97.53% of newborns at five minutes and 80.24% of the infants had birth weight between 2.5 to 3.9kg. This was an excellent result compared to other studies conducted in Nepal despite the challenges of limited health care resources to improve the health of women and children. Dhakal et al showed APGAR score of six or more in 97.9% of cases at five minutes [11]. Whereas, Bhandari (2017) noted APGAR score at five minutes of more than five in just 61.2% cases and the fetal weight between 2.5-4 kg were observed in just 78% of the newborns [14].

In Nepal, around 41% deliveries take place at home, especially in rural areas [8]. The rural areas of Nepal still lack well-trained and qualified nurses and doctors. In most cases these deliveries at home takes place with help of Traditional Birth Attendants (TBAs) however these TBAs do not have the skills and expertise to deal with birth related complications, therefore risking the lives of mother and the infant. The poor socioeconomic situation of the family in rural areas often delay the decision making in seeking access to skilled delivery care. This often creates a sense of emergency enforcing the caesarean section. However, in our hospital, we ensure that every pregnant woman is offered an option of vaginal delivery until the indication of CS appears. The constant monitoring of these pregnant patients helps in making sure that the indications for CS are not missed. In many cases, we would already have seen these patients during pregnancy. All these pregnant women and their relatives are counselled about our government policy regarding incentives for antenatal checkup (schedule four visit) and hospital delivery. We also advise patients to stay in close proximity to the hospital, especially during the rainy seasons, to avoid any unwanted and complicated pregnancy outcomes. All these initiatives have ensured that the rate of CS in Ilam District Hospital remains on the lower side and the complications following the CS is minimal. Moreover, we did not have any maternal and neonatal mortality in our study period despite having the limited health care resources, which we see as an achievement.

CONCLUSION

This study showed that the prevalence of CS at 14.70%, which is comparatively lower than the rates reported in other parts of the country. Fetal distress/MSL, NPOL and Failed induction were reported as most common indications for CS. No any major complications were seen in mothers and newborns following the cesarean section. Though it is challenging to provide Comprehensive Emergency Obstetric Care (CEOC) service in district hospital with limited resources, maternal and fetal outcomes were significantly good. Complications were minimal but this can be still lowered with better antenatal services, appropriate intra-partum fetal monitoring and timely intervention.

LIMITATIONS OF THE STUDY

This study was conducted with a small sample size at single site and therefore cannot be generalized for all hospitals. We recommend conducting further multi-center study with larger sample size and longer follow up period to better understand prevalence, indications of complications of CS.

CONFLICT OF INTEREST

The authors declare no financial support or potential conflict of interest.

REFERENCES

- 1. Charoenboon C, Srisupundit K, Tongsong T. Rise in cesarean section rate over a 20-year period in a public sector hospital in northern Thailand. Archives of gynecology and obstetrics. 2013 Jan 1;287(1):47-52.
- 2. Sewell JE. Cesarean section-a brief history. A brochure to accompany an exhibition on the history of cesarean section at the National Library of Medicine. 1993 Apr 30;30.
- 3. Kwawukume EY. Caesarean section in developing countries. Best Practice & Research Clinical Obstetrics & Gynaecology. 2001 Feb 1;15(1):165-78.
- 4. Dhakal S, Van Teijlingen E, Raja EA, Dhakal KB. Skilled care at birth among rural women in Nepal: practice and challenges. Journal of health, population, and nutrition. 2011 Aug;29(4):371.
- 5. Irani M, Deering S. Challenges affecting access to cesarean delivery and strategies to overcome them in low-income countries. International Journal of Gynecology & Obstetrics. 2015 Oct 1;131(1):30-4.
- 6. Samdal LJ, Steinsvik KR, Pun P, Dani P, Roald B, Stray-Pedersen B, Bøhler E. Indications for Cesarean Sections in Rural Nepal. The Journal of Obstetrics and Gynecology of India. 2016 Oct 1;66(1):284-8.
- 7. Subedi S. Rising rate of cesarean section-a year review. Journal of Nobel Medical College. 2011;1(2):50-6.
- 8. Ministry of Health, Nepal; New ERA; and ICF. Nepal Demographic and Health Survey. Kathmandu, Nepal: Ministry of Health, Nepal; 2016
- 9. Gurung RT, Gurung G, Shrestha R, Gurung T, Sharma P. Prevalence and Outcome of Cesarean Section at Gandaki Medical College Teaching Hospital and Research Centre, Pokhara, Nepal. Journal of Gandaki Medical College-Nepal. 2016;9(2):1-6.
- 10. Rajbhandary S, Shrivastava VR. Study of Indications and postoperative complications of primary caesarean section in tertiary care hospital in Nepal. Int J Reprod Contracept Obstet Gynecol. 2018;7(3):835-40.
- 11. Dhakal KB, Dhakal S, Bhandari S. Profile of Caesarean Section in Mid-Western Regional Hospital in Nepal. Journal of Nepal Health Research Council. 2018 Mar 18;16(1):84-8.
- 12. Prasad A, Bhandari G, Saha R. Profile of Caesarean Section at Kathmandu Medical College. Journal of Nepal Health Research Council. 2017 Sep 15;15(2):110-3.
- 13. Sharma S, Dhakal I. Complications among Mothers and New Born Due to Delivery Process in Selected Hospitals of Rupandehi District Nepal. Journal of Nepal Health Research Council. 2018 Jul 5;16(2):190-4.
- 14. Bhandari BR. Indications and Fetal Outcomes of Caesarean Section in Sindhu Sadabahar Hospital, Sindhupalchok. Kathmandu University medical journal (KUMJ). 2017;15(60):284-7.

6/6